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A generalized Osborn–Cox relation
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The generalized temporal residual mean (TRM-G) framework is reviewed and
illustrated using a numerical simulation of vertical shear instability. It is shown how
TRM-G reveals the physically relevant amount of diapycnal eddy fluxes and implied
diapycnal mixing, and how TRM-G relates to the Osborn–Cox relation, which is
often used to obtain observational estimates of the diapycnal diffusivity. An exact
expression for the diapycnal diffusivity in the TRM-G is given in the presence of
molecular diffusion, based on acknowledging and summing up an entire hierarchy of
eddy buoyancy moments. In this revised form of the Osborn–Cox relation, diapycnal
diffusivity is related only to irreversible mixing of buoyancy, since all advective
and molecular flux terms are converted to dissipation of variance and higher order
moments. An approximate but closed analytical expression can be given for the revised
Osborn–Cox relation with the caveat that this closed expression implies unphysical
cross-boundary rotational fluxes.

It is demonstrated that the original Osborn–Cox relation, in which advective and
molecular flux terms are simply neglected, is an approximation to the full form valid
to first order. In the numerical simulation the original Osborn–Cox relation holds
to a surprisingly good approximation despite large advective fluxes of variance and
large lateral inhomogeneity in the turbulent mixing.

1. Introduction
The Osborn–Cox relation (Osborn & Cox 1972) considers a simplified eddy variance

budget for a tracer and locally relates production of variance to molecular dissipation
while neglecting advective and molecular fluxes of variance. Eddy variance denotes
here (half of) the square of tracer perturbations given by deviations from Reynolds
averaged quantities. The production of variance is part of the eddy tracer flux in the
direction of the gradient of the mean tracer. Since that part of the eddy tracer flux can
also be related to a turbulent diffusivity, the Osborn–Cox relation offers the possibility
to relate the turbulent diffusivity to estimates of dissipation. Specifying buoyancy as
the tracer under consideration, this diffusivity becomes the diapycnal diffusivity, which
plays for instance an important role for the large-scale ocean circulation (Wunsch &
Ferrari 2004). Therefore, considerable efforts have been made during the last years to
obtain accurate observational estimate of the diapycnal diffusivity in the ocean (e.g.
Schmitt et al. 2005).
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The use of the Osborn–Cox relation to estimate the diapycnal diffusivity was
criticised by Winters & D’Asaro (1995), stating that the average of the molecular
flux across instantaneous isosurfaces of tracers (which they called the diascalar
flux) is not necessarily identical to the turbulent (plus molecular) eddy flux across
mean tracer isosurfaces (which they call the advective flux and which is used in the
Osborn–Cox relation to determine the diffusivity). By defining a new coordinate which
monotonically increases with instantaneous values of the tracer under consideration,
they proposed a method to estimate the physically relevant eddy flux. The associated
diffusivity is given by the molecular diffusivity enhanced by the ratio between the
instantaneous area of tracer isosurfaces to the area of the mean tracer isosurface. The
method of Winters & D’Asaro (1995) is akin to the effective diffusivity of Nakamura
(1996) which was developed independently for the estimates of large-scale lateral
mixing in the stratosphere. The use of a tracer coordinate replacing the vertical
coordinate and its benefits for the interpretation of diapycnal eddy fluxes is also often
discussed for application to large-scale ocean dynamics (De Szoeke & Bennett 1993;
McDougall & McIntosh 2001).

However, the use of a tracer related coordinate to estimate diapycnal diffusivity
is hampered by practical difficulties (Gregg 1998), since the method requires
detailed knowledge of the instantaneous two-dimensional buoyancy surfaces, while
observations are limited to one-dimensional vertical profiles of buoyancy. In practice,
observationists often prefer to use the so-called method of ‘Thorpe-sorting’ (Thorpe
1977; Dillon & Park 1987) applied to observed profiles of tracer fluctuations, with
results close to the method by Winters & D’Asaro (1995). On the other hand, the
temporal residual mean (TRM) framework, pioneered by McDougall & McIntosh
(1996) and discussed in general form by Eden, Greatbatch & Olbers (2007), offers an
alternative theoretical approach to the method of Winters & D’Asaro (1995) based
on a fixed, tracer independent coordinate system. The TRM (or TRM-G as the
generalized form) is an extension of the transformed Eulerian mean (TEM) theory
developed by Andrews & McIntyre (1976) for zonal mean flows and by Plumb (1990)
and Plumb & Ferrari (2005) for three-dimensional quasi-geostrophic flows. In contrast
to the original TEM theory by Andrews & McIntyre (1976), a part of the turbulent
eddy flux is interpreted in TRM-G as a rotational flux which does not affect the mean
tracer budget and should therefore not be related to a turbulent diffusivity. It was
shown by Eden et al. (2007) that only the physically relevant cross-isopycnal eddy
fluxes are associated with a turbulent diffusivity in the TRM-G.

Both the TEM and the TRM framework were originally developed for quasi-
geostrophic (or synoptic) eddy activity in the atmosphere and the ocean. Since this
dynamical regime is believed to involve only weak diapycnal mixing, applications and
discussions of the TRM theory (McDougall & McIntosh 1996, 2001) have tended to
focus on the lateral effects of mixing by quasi-geostrophic eddies, often interpreted as
advection of buoyancy or mixing of potential vorticity, while diapycnal mixing has
not been considered. Here, we review the TRM-G framework of Eden et al. (2007)
and demonstrate, using a numerical simulation of vertical shear instability with large
diapycnal mixing, that the TRM-G is also useful to interpret mixing in this dynamical
regime. In fact, we are able to show that the Osborn–Cox relation still holds to first
order in our experiment, i.e. better than one might have expected, given the presence
of large advective fluxes of variance and strong inhomogeneities of the mean fields.

Similar to the method by Winters & D’Asaro (1995), practical complications due
to higher order derivatives also hamper the application of the TRM-G for the
analysis of in situ observations. On the other hand, the TRM-G turns out to be useful
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for estimates of the turbulent diapycnal diffusivity in model simulations. In contrast to
methods based on tracer dependent coordinates (Winters & D’Asaro 1995; Nakamura
1996), TRM-G yields a turbulent diffusivity localized in space rather than a bulk integ-
ral diffusivity as a function of the tracer dependent coordinate. The TRM-G estimate
is also shown to be superior to a diffusivity estimated from a simple flux/gradient rela-
tionship. This is because the diffusivity in TRM-G is only related to irreversible mixing
of the tracer under consideration, while the diffusivity estimated from the flux/gradient
relationship can be strongly biased due to the presence of rotational eddy fluxes.

After describing the numerical simulation and the mean tracer distribution in the
following section, we estimate the turbulent diffusivity in the simulation based on
the total cross-isopycnal eddy fluxes within the TEM framework of Andrews &
McIntyre (1976) in § 3 and discuss the estimate implied by the original Osborn–Cox
relation in § 4. We find both estimates rather different and explain this difference by
discussing rotational eddy fluxes following the TRM-G framework in § 5. In § 6, we
furthermore account for the presence of rotational fluxes of variances and higher
order moments following the TRM-G, which then ultimately leads to the generalized
Osborn–Cox relation where all the advective and molecular flux terms are taken into
account leaving only dissipative terms behind, which are used in turn to determine
the diffusivity. We also discuss an approximate form of the TRM-G in § 7 which
leads to a closed simplified form of the generalized Osborn–Cox relation. In § 8, we
compare the different local estimates of mixing with the non-local estimate by Winters
& D’Asaro (1995), while the last section summarizes and discusses the results.

2. Mean tracer equation and numerical model
We concentrate on the two-dimensional tracer equation

bt + u · ∇b = ∇ · κ∇b, (2.1)

where b denotes a tracer, u velocity with ∇ · u = 0 and κ a molecular (or subgrid scale)
diffusivity, which we take to be constant. We define a Reynolds average (̄) for which
the usual rules apply and which could be a time or ensemble mean. The (Reynolds)
averaged tracer budget is then given by

b̄t + ū · ∇b̄ = ∇ · κ∇b̄ − ∇ · u′b′, (2.2)

where b′ = b − b̄ and u′ = u − ū denotes tracer and velocity fluctuations, respectively.
For illustration of the discussion we present results from a simulation of vertical shear
instability in a two-dimensional channel (in x and z direction) using a non-hydrostatic
numerical model (The numerical code together with all configurations used in this
study can be accessed at http://www.ifm-geomar.de/∼cpflame.). Note, however, that
all analytical results discussed here carry over to the three-dimensional case.

Figure 1 shows a snapshot in terms of buoyancy and velocity from the simulation.
Large vertical shear and uniform vertical stratification are prescribed by linear
relaxation of buoyancy and velocity in a restoring zone over the whole depth range
from x = 0 m to x = 2 m in a channel of 60 m length (see figure 1) with a time scale of
0.2 s (note that the restoring zone is just to the left of the region shown in figure 1).
The prescribed velocity within the restoring zone is u =(1, 0) m s−1 for z > −8 m and
u = (3, 0) m s−1 for z < −8 m and the prescribed constant vertical buoyancy gradient
within the restoring zone is ∂

∂z
b̄ = N2

0 with N0 = 0.02 s−1. Outside the restoring zone the
flow is free to evolve. The vertical boundary conditions are free slip for momentum
and zero flux of buoyancy. The channel is periodic in the x direction, with the effect
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Figure 1. Snapshot of buoyancy (in 10−3 m s−2) and velocity (arrows) in a simulation of
vertical shear instability. The vector shown below the figure corresponds to 10m s−1.

that the large perturbations seen in figure 1 propagating into the restoring zone are
strongly damped and serve as small initial perturbations when propagating out of the
restoring zone on the left side of figure 1.

Horizontal and vertical resolution of the model domain is 0.125 m and the time
step is 1.25 × 10−2 s. The subgrid-scale horizontal and vertical harmonic diffusivity
and viscosity is κ = 5 × 10−3 m2 s−1. The magnitude of diffusivity and viscosity was
chosen in order to limit vertical grid Péclet and Reynolds numbers to less than
approximately 10 in the intense mixing zones. A prognostic equation for buoyancy is
solved in the model subject to harmonic diffusion (and the restoring zone), while there
is no implicit numerical diffusion (we use a fourth-order centred difference advection
scheme). The flow is in quasi-stationary equilibrium after a couple of minutes and the
results are taken from a 1 h period of model time after the initial spin-up.

3. Diapycnal eddy fluxes
The large vertical shear in the channel which is prescribed in the restoring zone at

x < 5 m, leads to rapidly growing Kelvin–Helmholtz instabilities and to a large lateral
inhomogeneity. Strong eddy activity downstream of the restoring zone can be seen in
the snapshot shown in figure 1. The familiar Kelvin–Helmholtz billows, characteristic
of vertical shear instability, show up in the simulation such that we can expect strong
mixing of buoyancy. The eddy activity leads indeed to an eddy flux across contours
of mean buoyancy (figure 2), i.e. to a cross-isopycnal eddy flux. It is predominantly
upwards (down gradient) but there is also a (isopycnal) component along contours of
the mean buoyancy. Contours of mean buoyancy (figure 2) are diverging downstream
of the restoring zone indicating also diapycnal mixing of b̄ by the eddy activity. It is
therefore tempting to relate the cross-isopycnal eddy flux to the mixing of the mean
buoyancy.

To diagnose the mixing of mean buoyancy we first follow the TEM framework of
Andrews & McIntyre (1978) in which the eddy flux is decomposed into a component
across and a (isopycnal) component along contours of the mean buoyancy, i.e

u′b′ = −KTEM ∇b̄ + BTEM ∇¬b̄, (3.1)
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Figure 2. Mean buoyancy b̄ (in 10−3 m s−2) and eddy buoyancy flux u′b′. The flux vector
was box averaged (12 points in x and 4 points in z direction). The vector shown below the
figure corresponds to 5 × 10−4 m2 s−3.
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Figure 3. TEM-based estimate of the effective diffusivity relative to the subgrid-scale
diffusivity in the form (KTEM + κ)/κ . Regions in which |∇b̄|1/2 < 0.015 s−1 are not shaded.
Also shown are contours of the mean buoyancy (red lines).

introducing the curl operator ∇¬ = (− ∂
∂z

, ∂
∂x

). Using the expression in the mean

buoyancy budget (defined in (2.2)), KTEM = −|∇b̄|−2u′b′ · ∇b̄ is identified as a turbulent
diapycnal diffusivity, while BTEM acts as a streamfunction of eddy driven flow. Note
that the latter plays the dominant role for quasi-geostrophic eddy activity in the
atmosphere and the ocean and also in the theory of Andrews & McIntyre (1978)
while the diapycnal diffusivity KTEM is often neglected since it is considered to be
small. In contrast, however, we will concentrate here on the diapycnal diffusivity, and
we will not further discuss the streamfunction BTEM .

KTEM was diagnosed in the numerical simulation and is shown relative to the
subgrid-scale diffusivity κ in figure 3. Since KTEM gets very large and its estimate
uncertain (because of finite differencing and to a smaller extent by temporal averaging)
when the gradient of the mean buoyancy gets low, which is the case in the well-mixed
region downstream of the source region for x � 30 m, we show KTEM for regions in
which |∇b̄|1/2 > 0.015 s−1 only, corresponding to regions where the ratio between the
threshold value for |∇b| and the stratification of the unperturbed (background) state
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Figure 4. 1 + C̄ in the numerical simulation, where C̄ denotes the Cox number. Regions in
which |∇b̄|1/2 < 0.015 s−1 are not shaded. Also shown are contours of the mean buoyancy (red
lines).

exceeds 1/2. It is obvious that the increasing eddy activity downstream of the source
region leads to a diapycnal turbulent diffusivity KTEM which is more than 100 times
larger than the subgrid-scale diffusivity κ . However, we argue here that much of the
eddy activity is related to a rotational eddy flux without any local mixing effect due
to a divergence of the eddy flux. We stress that such a rotational eddy flux should
not be associated with a diffusivity. We show below that this rotational eddy flux is
associated with an advective flux of variance along mean isopycnals which is rather
large in the numerical simulation.

4. Original Osborn–Cox relation
A physical interpretation of the turbulent diapycnal diffusivity is offered by the

Osborn–Cox relation, based on the budget of buoyancy variance given by

(φ2)t + ∇ · (uφ2 − κ∇φ2) = −κ |∇b′|2 − u′b′ · ∇b̄, (4.1)

where φ2 = b′2/2. Neglecting in the steady variance budget (i.e. for (φ2)t = 0) for
a moment the advective and molecular fluxes we obtain a local relation between
production (u′b′ · ∇b̄) and dissipation of variance (κ |∇b′|2) by molecular diffusion.
Using the TEM decomposition for the eddy buoyancy flux (defined in (3.1)), the
Osborn–Cox relation is recovered

KTEM = κC̄, (4.2)

where C̄ = |∇b′ |2
|∇b̄|2 is sometimes called the Cox number. It measures the relation between

squared gradients of perturbation to the squared gradients of the mean tracer and
its knowledge allows calculation of the turbulent diffusivity. For turbulent flows it is
normally found that C̄ � 1, such that the Osborn–Cox relation demonstrates how the
turbulence enhances the effect of molecular diffusivity by increasing the instantaneous
gradients relative to the gradients of the mean buoyancy.

The Cox number in our simulation is shown in figure 4 on the same colour scale
as the turbulent diffusivity KTEM relative to the subgrid-scale diffusivity κ in figure 3.
Although the lateral structure of C̄ is similar to KTEM /κ , it is in general smaller than
KTEM /κ implying much less mixing than the previous estimate. It is clear that this
difference originates from the neglected advective variance fluxes (molecular variance
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fluxes are much smaller) in the variance budget (defined in (4.1)), such that the validity
of the Osborn–Cox relation and the implied diffusivity is not obvious. However, it
is possible to eliminate the advective fluxes in the variance budget in a physically
consistent way and to come to a more precise physical interpretation of the turbulent
diffusivity as shown next.

5. Rotational eddy fluxes
Following the TRM-G framework of Eden et al. (2007), we decompose the eddy

fluxes into their isopycnal and cross-isopycnal components, as before in the TEM
decomposition, but in addition we now also account for rotational eddy fluxes. We
also decompose the advective plus molecular fluxes in the variance budget in the
same way, i.e.

u′b′ = ∇¬θ1 + B1∇¬b̄ − K1∇b̄ , uφ2 − κ∇φ2 = ∇¬θ2 + B2∇¬b̄ − K2∇b̄, (5.1)

Note that the rotational flux component ∇¬θ1 drops out taking the divergence of the

eddy flux u′b′ in the mean tracer budget (defined in (2.2)), such that, with respect to
the mean budget, we are free to choose θ1. The same holds for ∇¬θ2 (which we have
introduced for later use) and the divergence of the advective and molecular variance
fluxes uφ2 − κ∇φ2 in the variance budget. θ1 acts as a streamfunction for a rotational
eddy buoyancy flux and will show up in the variance budget, a fact which will be
used to understand and to obtain its value. K1 takes the same meaning as KTEM

and acts as a turbulent diapycnal diffusivity in the mean tracer budget, while B1 acts
as a streamfunction of eddy-driven velocity. We get after some manipulations in the
steady state variance budget

(∇¬θ1 − ∇¬B2) · ∇b̄ = −κ |∇b′|2 + K1|∇b̄|2 + ∇ · K2∇b̄. (5.2)

Now it is possible to choose θ1 = B2 such that the advective terms vanish. In this
setting, the rotational flux potential is given by the flux of variance circulating along
contours of mean buoyancy. The ‘localized’ variance budget can then be solved for
the turbulent diffusivity in steady state resembling a revised Osborn–Cox relation:

K1 = κC − D(K2), (5.3)

with the operator D() = |∇b̄|−2∇ · ()∇b̄. It follows that K1 can be generated in steady
state either by dissipation of variance and/or a cross-isopycnal flux of variance, as
noted first by Medvedev & Greatbatch (2004). Neglecting for a moment the diapycnal
flux of variance related to K2, the Osborn–Cox relation is recovered, i.e. a local balance
between production and dissipation of variance.

Figure 5 shows uφ2 and its isopycnal component (B2) in the numerical simulation.
Note that we have set θ2 = 0 for the moment such that we show B2 = |∇b̄|−2uφ2 · ∇¬b̄

in figure 5. We stress that θ2 = 0 is only used momentarily for the purpose of
demonstration since this assumption will be dropped when we consider rotational
fluxes of variance in the next section. The mean advection ūφ2 dominates in the
total advective flux of variance uφ2 = ūφ2 + u′φ2 and the molecular flux is much
smaller than the advective flux. Thus, the advective flux of variance is predominantly
horizontal and positive in the x direction while its vertical component remains small.

Figure 6 shows the eddy buoyancy variance φ̄2. It is increasing downstream of
the source region due to the increasing eddy activity such that the advective flux
of variance also increases with x. The result is that B2 = θ1 shows a similar lateral
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Figure 5. The advective flux of variance uφ2 (arrows) and its isopycnal component B2 in
10−3 m3 s−3 (shaded). B2 was calculated setting θ2 = 0. The variance flux vector was box
averaged (12 points in x and 4 points in z direction). The vector shown below the figure
corresponds to 4 × 10−7 m3 s−5. Regions in which |∇b̄|1/2 < 0.015 s−1 are not shaded. Also
shown are contours of the mean buoyancy (red lines).
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Figure 6. Buoyancy variance φ̄2 in 10−6 m2 s−4 (shaded) and rotational eddy flux (arrows)
which was also box averaged (12 points in x and 4 points in z direction). The vector shown
below the figure corresponds to to 5 × 10−4 m2 s−3. Regions in which |∇b̄|1/2 < 0.015 s−1 are
not shaded. Also shown are contours of the mean buoyancy (red lines).

structure as the variance itself. The gauge potential θ1 serves as a streamfunction for
the rotational eddy flux ∇¬θ1 which is also shown in figure 6. Comparing the vertical

rotational eddy flux ∇¬θ1 with the ‘total’ eddy flux u′b′ in figure 2 (note that the arrow
scale is identical in both figures) it becomes obvious that a large part of the ‘total’
vertical eddy flux is in fact given by the rotational flux ∇¬θ1. In particular in the region
15 m � x � 30 m the vertical ‘total’ eddy flux of positive sign is almost completely
made by the rotational eddy flux ∇¬θ1. This rotational component of the eddy flux is
responsible for the large diapycnal diffusivities in figure 3 compared to the estimate
using the original Osborn–Cox relation (4.2) and is related to the large advective
fluxes of variance along isopycnals. Note that the flux of variance was neglected in
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the original Osborn–Cox relation (4.2) and that only its cross-isopycnal component
is related to a diapycnal diffusivity in the revised Osborn–Cox relation (5.3).

When the flow reaches the restoring zone (not shown in figure 6), the variance
rapidly decays, such that the isopycnal flux of variance also vanishes. That means
that the streamfunction θ1 for the rotational eddy flux recirculates within the restoring
zone. Note that there is no rotational eddy flux across the upper or lower boundary
in this configuration.

6. Rotational variance fluxes
Comparing figure 6 and figure 2 it becomes obvious that the rotational eddy flux

∇¬θ1 overcompensates the ‘total’ eddy flux u′b′ such that the resulting diffusivity,

K1 = |∇b̄|−2(u′b′ − ∇¬θ1), can get negative in some regions (not shown). This artifact
is in fact related to a rotational flux component carried by the flux of variance,
which we have already implicitly indicated by the definition of θ2. Note that we have
assumed θ2 = 0 in figures 5 and 6. Note also that another effect of the rotational
flux of variance on the turbulent diffusivity is given by its cross-isopycnal component
showing up in the revised Osborn–Cox relation (5.3). We will show below that the
diapycnal component of the variance flux also shows a large rotational component,
obscuring the revised Osborn–Cox relation (5.3).

We also note that the physical interpretation of the turbulent diffusivity in the
revised Osborn–Cox relation (5.3) is hampered by the presence of the cross-isopycnal
flux of variance. In consequence, the validity of the original Osborn–Cox relation
(4.2) in which the cross-isopycnal flux of variance was neglected remains unclear. The
meaning of the term is not obvious from the discussion so far, but it can also be
related to dissipation of buoyancy moments when considering the rotational variance
flux using the method of Eden et al. (2007).

Analogous to the gauge potential of the eddy buoyancy flux θ1, for which the
setting was obtained from the second buoyancy moment (variance) budget, we can
obtain a setting for θ2 from the budget of the third buoyancy moment. As outlined
by Eden et al. (2007), it is in fact useful to consider the full hierarchy of centred
buoyancy moments given by

(φn+1)t + nφ̄nb̄t + ∇ · f n+1 = −κn∇φn · ∇b̄ − κn(n − 1)φn−1|∇b′|2 − nφnu · ∇b̄, (6.1)

with φn = b′n

n
. All advective and molecular fluxes in the budget for φn are combined

in the flux vector f n, which is decomposed in turn as before into isopycnal and
diapycnal components plus rotational fluxes, i.e.

f n = uφn − κ∇φn − κ(n − 1)φn−1∇b̄ = ∇¬θn + Bn∇¬b̄ − Kn∇b̄. (6.2)

Note that for buoyancy moments n> 2, two parts of molecular fluxes show up in
f n (both are small compared to the advective flux in the numerical simulation).
However, all advective and molecular fluxes can be eliminated from all budgets of
buoyancy moments by the choice nθn = Bn+1 (analogous to (5.2)). We get after some
manipulations for the steady budgets of the buoyancy moments

K1 = κC − D(K2), Kn = κ(n − 1)φn−1(1 + C) − 1

n
D(Kn+1) + 2κF(φ̄n), (6.3)

with the operator F() = |∇b̄|−2∇b̄ · ∇(). Solving now subsequently for the turbulent
diapycnal diffusivity K1 we obtain the following generalized form of the Osborn–Cox
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relation

K1 + κ = κ

[
(1 + C) − Dφ1(1 + C) + D2φ2(1 + C) − 1

2
D3φ3(1 + C)

+
1

3!
D4φ4(1 + C) − · · · − 2DFφ̄2 + 2

1

2
D2Fφ̄3 − 2

1

3!
D3Fφ̄4 + · · ·

]
. (6.4)

In contrast to the original Osborn–Cox relation (4.2), the generalized form (6.4) of the
variance budget is exact for steady flow (compare Eden et al. 2007 for the generalized
Osborn–Cox relation including growth and decay of buoyancy moments). In contrast
to the revised form given by (5.3), the diapycnal flux of variance which we found hard
to interpret, has been converted to dissipative terms which are all proportional to the
subgrid-scale diffusivity κ . The term has now a clear physical meaning: Turbulent
diffusivity K1 is locally related to dissipation of buoyancy moments in subsequent
order. K1 is zero if there is no subgrid-scale mixing.

From the setting nθn = Bn+1 we can estimate now the rotational flux of variance
θ2 = 1

2
B3 where B3 denotes the isopycnal component of the flux of the third buoyancy

moment, uφ3. Figure 7 shows the buoyancy skewness φ̄3 in the numerical simulation.
It is negative over large regions, only in the upper layer φ3 gets positive. Also shown
is the rotational flux of variance ∇¬

1
2
B3. The rotational flux of φ3 given by ∇¬θ3 was set

momentarily to zero in order to diagnose B3 (it is given by θ3 = 1
3
B4 in TRM-G).

In the lower half of the channel, the rotational variance flux is horizontal and
positive in the x direction, i.e. contributing to a large portion of the ‘total’ flux of
variance, uφ2 as shown in figure 5 (using identical vector length in both figures). In
the upper part of the channel ∇¬

1
2
B3 is horizontal and negative in x direction, i.e. of

opposite sign of the ‘total’ variance flux. The overcompensation of the ‘total’ eddy
flux u′b′ by the rotational flux, as observed when setting θ2 = 0, is reduced but not
completely eliminated. Note that the rotational component of the flux of skewness
given by θ3 (not shown) will give a further correction to the rotational eddy flux and
so on.
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Figure 8. Cross-isopycnal variance flux component K2 in 10−3 m3 s−3 (shaded) and the flux
∇K2 (arrows) which was also box-averaged. The vector shown below the figure corresponds to
to 5 × 10−4 m2 s−3. K2 was calculated setting θ2 = 0. Regions in which |∇b̄|1/2 < 0.015 s−1 are
not shaded. Also shown are contours of the mean buoyancy (red lines).

Only in the region 20 m � x � 30 m the rotational variance flux shows a significant
vertical (cross-isopycnal) component. In that region the rotational flux of variance
makes up in fact a large portion of the ‘total’ cross-isopycnal flux of variance. Figure 8
shows K2 (estimated again momentarily using θ2 = 0) which describes the diapycnal
component of the ‘total’ flux of variance in the simulation. It is predominantly
negative, i.e. the ‘total’ variance flux is directed up the gradient of mean buoyancy.
In consequence, the rotational flux is reducing most of the impact of the effect of the
diapycnal flux of variance in the Osborn–Cox relations (5.3) and (6.4). That means
that the original Osborn–Cox relation, in which the advective fluxes of variance have
been neglected is a surprisingly good approximation to the full TRM-G version of
the Osborn–Cox relation (6.4) for this model configuration.

7. Approximate Osborn–Cox relations
The first term on the right hand side of (6.4) corresponds to the original Osborn–

Cox relation (4.2)), while the remainder shows some resemblance with an expansion
of an exponential function, although it is an operator. Formally, we might therefore
interpret the series as an expansion of an operator E():

K1 + κ = κE(b′, b̄). (7.1)

The analytical form of the operator E() remains unknown to us, but the first term
of an expansion of E() would be identical to the original Osborn–Cox relation (4.2)
which means that a first-order truncation to E() is given by E(b′, b̄) ≈ 1 + C.

However, we can come closer to the unknown operator E using the following
slightly different expression for the budget of the buoyancy moments. We split the

operator D in (6.4) into two components, i.e. D = D + F with D = ∇2b̄

|∇b̄|2 denoting an
inverse b̄ scale related to the curvature of the mean isopycnals. It is then possible to
absorb the components related to the operator F (including the term 2κFφn in (6.3))
by the rotational flux as outlined in the Appendix. However, we have to stress that
this procedure can lead to an unphysical rotational eddy flux across the boundaries
and that the definition of the rotational flux becomes ill-posed for the case of closed



468 C. Eden, D. Olbers and R. J. Greatbatch

0.0

5 × 10–4
15 25 35 45 55

–4.0

–8.0

–12.0

4.0
3.6
3.2
2.8
2.4
2.0
1.6
1.2
0.8
0.4
0
–0.4
–0.8
–1.2
–1.6
–2.0
–2.4
–2.8
–3.2
–3.6
–4.0

Figure 9. Approximative additional rotational flux potential χ1 =
∫

∂K2

∂z
dx in 10−3 m3 s−3

(shaded) and resulting rotational flux (arrows). K2 was calculated setting θ2 = 0. The flux
vector was box averaged (12 points in x and 4 points in z direction). The vector shown below
the figure corresponds to 5 × 10−4 m2 s−3. Regions in which |∇b̄|1/2 < 0.015 s−1 are not shaded.
Also shown are contours of the mean buoyancy (red lines).

isopycnals. This artifact will be demonstrated with the aid of the numerical simulation
below, although its effect on the turbulent diffusivity appears to be small.

Using the modified rotational flux nθn = Bn+1 + χn where the additional rotational
gauge potential χn is given by the condition ∇¬χn · ∇b̄ = ∇(Kn+1 − 2nκφ̄n) · ∇b̄ (see also

the Appendix) the steady hierarchy of buoyancy moments becomes

K1 = κC − DK2, Kn = κ(n − 1)φn−1(1 + C) − 1

n
DKn+1. (7.2)

Equation (7.2) no longer contains an operator, i.e. the operator D in (6.3) has been
turned into the inverse buoyancy curvature scale D and the operator F was absorbed
by rotational fluxes. Thus solving for K1 in (7.2) and summing up is straightforward
and yields an exact expression for the turbulent diffusivity

K1 + κ = κ(1 + C)e−Db′
, (7.3)

in terms of the Cox number C and the dimensionless ratio Db′ relating the tracer
perturbation with the mean curvature scale D. We note that with the redefined
rotational fluxes, the operator E can be expressed in analytical form as E(b′, b̄) = (1+
C)e−Db′

. For D → 0 we recover the first-order approximation of the operator E and
thus the original Osborn–Cox relation (4.2).

Figure 8 also shows the flux ∇K2. Note that for n= 1 in (1) of the Appendix, the
flux ∇K2 together with the isopycnal flux of variance ∇¬B2 and the molecular flux of

variance has to be balanced by the redefined rotational flux ∇¬θ1. It is clear that ∇K2

is much smaller than the part related to the isopycnal flux of variance ∇¬B2 (note
that figures 6 and 8 show the fluxes using the same arrow scaling) such that the
redefinition of θ1 does not appear to have large consequences.

As defined in the Appendix, the cross-isopycnal projection of the flux ∇K2 is meant
to be balanced by the cross-isopycnal projection of the rotational flux ∇¬χ1. The
streamfunction for the rotational flux component χ1 is shown in an approximate form
as χ1 =

∫
∂K2

∂z
dx in figure 9, where the integration along isopycnals was replaced by an

integration along z levels and the cross-isopycnal derivative by the vertical derivative
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Figure 10. The modified Cox number (1 + C) e−Db′
. Regions in which |∇b̄|1/2 < 0.015 s−1 are

not shaded. Also shown are contours of the mean buoyancy (red lines).

for simplicity. The resulting rotational flux component ∇¬χ1 is also shown in figure 9
(again using the same arrow scaling as in figure 8). As outlined in the Appendix, the
definition of χn is ill-posed in case of closed integration pathways. However, since
we show here only a subset of the integration domain, we can formally apply this
procedure in our simulation. The rotational eddy flux component ∇¬χ1 is of similar

magnitude as ∇¬B2, but its cross-isopycnal component is very small, in particular in
the region 15 m � x � 30 m where we found large cross-isopycnal rotational fluxes.
We might therefore expect that the redefinition of the rotational fluxes will not affect
much the turbulent diffusivity K1 in our model simulation.

On the other hand, the approximate rotational flux ∇¬χ1 shows a cross boundary
flux, i.e. large positive fluxes at x = 60 m. Note the other part of the rotational flux,
given by ∇¬B2, recirculates within the domain, since the variance and thus the isopycnal
projection of the variance flux is rapidly decaying in the restoring zone (which is not
shown in the figures). However, there is no such recirculation for the flux related to
χ1, leading to an unphysical rotational flux across the right-hand side of our figure.

However, as long as the impact of the revised rotational flux remains small, which
appears to be the case for our numerical simulation, we might regard the form (7.3) as
a valid approximation to the operator E beyond the first-order approximation given
by the original Osborn–Cox relation (4.2). The modified Cox number (1 + C)e−Db′ is
shown in figure 10. It is in fact almost identical to the original Cox number 1+C̄. This
is because for D → 0, i.e. for strong mixing both numbers become identical. Therefore,
we found again evidence that the original Osborn–Cox relation is a surprisingly good
approximation to the generalized form Eq. (6.4).

8. Non-local estimates of diffusivity
In this section, we compare the above discussed estimated diffusivity and Cox

numbers based on the Osborn–Cox relation with other interpretations and ways to
estimate the turbulent diffusivity. Figure 11(a) shows the Cox number Kwd/κ + 1
related to the turbulent diapycnal diffusivity Kwd as given by the method by Winters
& D’Asaro (1995). Kwd was derived from (7) and (12) of Winters & D’Asaro
(1995) for which the instantaneous buoyancy b and the squared gradient of the
instantaneous buoyancy |∇b|2 are interpolated on the new tracer-dependent vertical
coordinate z∗, which is given by (13) of Winters & D’Asaro (1995). The resulting
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Figure 11. (a) The Cox number Kwd/κ + 1 related to the diapycnal diffusivity of Winters &
D’Asaro (1995), Kwd as a function of z∗ in metre (see text for definition). (b) KTEM /κ + 1
(solid) and 1 + C̄ (dashed) as a function of z averaged along x in the entire channel.

Kwd(t, z
∗) = κ( db

dz∗ )
−2 〈|∇b|2〉, where the brackets denote a spatial average at constant

z∗, was also averaged over time and shown in figure 11 as a function of z∗. Note
that the tracer-dependent coordinate z∗ coincide with z for the case of horizontally
undulated isopycnals and that −15 m<= z∗ < =0 m. It was shown by Winters &
D’Asaro (1995) that Kwd is related to the total diapycnal irreversible flux across
instantaneous isopycnals caused by the subgrid-scale diffusive mixing.

It was also shown by Winters & D’Asaro (1995) that Kwd is given by the subgrid-
scale diffusivity κ times the ratio of the length of an instantaneous isopycnal
compared to the length of the mean isopycnal. Note that Kwd is very similar to
the effective diffusivity of Nakamura (1996) and that both approaches, due to their
one-dimensional nature, are unaffected by spurious rotational fluxes.

Figure 11(a) shows that Kwd/κ + 1 is largest for z∗ ≈ 7.5 m with values exceeding
60 but still much larger than one within the region −10 m � z∗ � −5 m indicating
strong diapycnal mixing in this region as well. For comparison, figure 11(b) shows
the previously discussed TEM-based mixing estimate (figure 3) as a function of z and
averaged in x along the entire domain of the model. The TEM-based estimate of the
diffusivity is much larger, while the estimate based on the Osborn–Cox relation, also
shown in figure 11(b), is much smaller, i.e. comparable to the non-local estimates,
demonstrating again the effect of the large rotational eddy fluxes in the TEM-based
mixing estimate.

It should be noted, however, that the different diffusivities in figure 11 should
be compared with care: The non-local diffusivity estimate of Winters & D’Asaro
(1995), Kwd , is shown in figure 11(a) as a function of the tracer dependent coordinate
z∗. In contrast, figure 11(b) shows the local diffusivity estimates using the classical
Osborn–Cox relation and the TEM-based estimate averaged at constant depth z.
The appearance of two different vertical coordinates, z∗ and z, makes it difficult to
compare the different estimates for the diffusivity directly. Furthermore, note that we
average across the region of high turbulent mixing and low or vanishing stratification
in the centre of the domain. Errors due to the low or vanishing stratification for the
estimate using the original Osborn–Cox relation and the TEM framework are thus
getting large. The Winters and D’Asaro method, on the other hand, is not effected by
these errors. It becomes obvious that if one is interested in the diffusivity related to
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basin averaged irreversible density flux and the corresponding diffusivity one should
refer to Kwd . On the other hand, if one would like to consider spatial variations in
diffusivity one should use the generalized Osborn–Cox relation to which the classical
Osborn–Cox relation appears to be a reasonable first-order approximation in our
model simulation.

9. Summary and discussion
In the TRM-G framework of Eden et al. (2007), the advective variance fluxes

along mean isopycnals are interpreted as rotational eddy fluxes with no effect in the
mean buoyancy budget and which should thus not be associated with a diapycnal
diffusivity. It is only the genuinely diapycnal component of the variance fluxes which
should be associated with a diapycnal diffusivity. In TRM-G, this diapycnal variance
flux can be expressed as molecular (subgrid-scale) dissipation of buoyancy moments.

In the original Osborn–Cox relation (4.2), which is often used to estimate diapycnal
diffusivity from observation estimates of molecular variance dissipation, all advective
variance fluxes (and molecular fluxes, which should be small) are simply neglected.
We assess the validity of this assumption and compare the results of the original
Osborn–Cox relation in terms of estimates of diapycnal diffusivity with a generalized
Osborn–Cox relation given by the TRM-G framework (defined in (6.4)), which yields
a physically well motivated diapycnal diffusivity.

For this comparison, we used a numerical simulation of vertical shear instability
with strong lateral inhomogeneity in turbulent mixing and with strong advective
fluxes of variance. We found that advective fluxes of variance are indeed to a
large extent associated with strong rotational eddy fluxes in the simulation. Relating
those rotational eddy fluxes to a diapycnal diffusivity in a flux-gradient relation
leads to a large overestimation of the diffusivity. In the generalized Osborn–Cox
relation, the rotational eddy flux of tracer is used to cancel out the isopycnal
flux of variance in the variance budget. We also found that much of the flux of
variance, including the remaining cross-isopycnal flux of variance in the Osborn–Cox
relation, is also of rotational nature which should also not be associated with the
diapycnal diffusivity. This notion leads to the consideration of the complete hierarchy
of buoyancy moments in the TRM-G which ultimately takes into account of all
advective and molecular flux terms in the generalized Osborn–Cox relation leaving
only dissipative terms associated with irreversible mixing of buoyancy to determine the
diffusivity.

In our model simulation, the original Osborn–Cox relation holds to a surprisingly
good approximation, despite the strong advective fluxes of variance and the large
lateral inhomogeneity of turbulent mixing in the setup. This is because the advective
and molecular fluxes of variance are cancelled out to a large extent by rotational eddy
fluxes, which should not be associated with irreversible mixing of buoyancy. Although
we cannot give a proof based on this single numerical experiment, we speculate that
this result points towards a better applicability of the assumptions in the original
Osborn–Cox relation, i.e. the neglection of advective and molecular fluxes, than one
might have expected.

On the other hand, shear instabilities might generate less mixing in three dimensions
than in our two-dimensional simulation, because secondary instabilities tend to flatten
the overturning Kelvin–Helmholtz billows and reduce their mixing power. It might
well be that in three dimensions the relative contribution of advection of variance
and rotational eddy fluxes in the variance budgets become more important than
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the dissipative contributions related to irreversible mixing of density, such that the
original Osborn–Cox model might become less accurate as a first-order approximation
to the generalized Osborn–Cox relation. Nevertheless, the mathematical framework
developed here carries directly over to three dimensions leading to an expression for
the diffusivity analogous to that in (6.4) (compare also Eden et al. (2007)).

The generalized Osborn–Cox relation is given by an infinite series of buoyancy
moments, which can be interpreted as an expansion of an operator whose closed
analytical form remain unknown to us. The first-order term of this expansion is
given by the original Osborn–Cox relation. By modifying the definition of rotational
fluxes in the TRM-G framework, we have formulated a closed analytical form of
the Osborn–Cox operator given by (7.3), which approximates the full form given
by (6.4), and which we found in the model simulation to be very similar to the
results obtained using the original Osborn–Cox relation. A caveat of the procedure
is, however, that it cannot be applied to cases with closed isopycnals. This is
because it is necessary to allow for rotational fluxes across the boundaries where
the mean isopycnals intersect. These rotational fluxes are needed to compensate for
molecular fluxes and advective fluxes related to spatial variations of the turbulent
diffusivity. However, given the simplicity of the closed analytical form, we argue that
it represents a practical alternative to the full form of the generalized Osborn–Cox
relation.

A drawback of the TRM-G framework and the (generalized) Osborn–Cox relation
is that it involves higher order derivatives (or, for the case of the approximate
form (7.3), an exponential function of buoyancy perturbations) which are difficult to
estimate with enough accuracy from observations or from numerical model results.
The approaches by Winters & D’Asaro (1995) and Nakamura (1996) overcome this
difficulty by concentrating on the bulk effect of irreversible mixing related to subgrid-
scale (molecular) processes. On the other hand, these approaches give by construction
no information about the localization of the enhanced turbulent mixing in horizontal
direction. Although it is clear that in our numerical experiment there is a large
inhomogeneity in turbulent mixing in the horizontal direction, and thus also a large
inhomogeneity in the turbulent diffusivity, the non-local approaches by Winters &
D’Asaro (1995) and Nakamura (1996) to determine this diffusivity cannot show this
inhomogeneity. In contrast, the TRM-G framework and the (generalized) Osborn–
Cox relation do show this inhomogeneity but is in turn hampered by the higher order
derivatives involved, which complicates the application, in particular in regions of
weak stratification. The application of the different approaches therefore depends on
whether or not a local estimate of the mixing is required.

This study was supported by the German DFG as part of the SFB 754. We thank
three anonymous reviewers and the editor for their help to improve previous versions
of this study.

Appendix
Using the flux decomposition (6.2) for f n we rewrite the budget of the buoyancy

moments (6.1) as

(φn+1)t + nφ̄nb̄t + (n∇¬θn − ∇¬Bn+1 + 2nκ∇φn − ∇Kn+1) · ∇b̄

= −nκ(n − 1)φn−1(|∇b′|2 + |∇b̄|2) + nKn|∇b̄|2 + Kn+1∇2b̄, (1)
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(with (n − 1)φn−1 = 1 for n= 1). With the setting nθn = Bn+1 + χn where the additional
rotational potential χn is given by the condition ∇¬χn · ∇b̄ = ∇(Kn+1 − 2nκφn) · ∇b̄ all
flux terms can be eliminated from the budget of buoyancy moments. Using this
redefined rotational flux the steady hierarchy becomes (7.2). The potential χn can be
obtained by integration along an isopycnal, since

∂χn

∂s
=

∂

∂n
(Kn+1 − 2nκφn) → χn =

∫
ds

(
∂

∂n
(Kn+1 − 2nκφn

)
, (2)

with the along-isopycnal derivative ∂
∂s

= |∇b̄|−1∇¬b̄ · ∇() and the diapycnal derivative
∂
∂n

= |∇b̄|−1∇b̄ · ∇(). For the case of closed isopycnals, it is clear that the definition for

χn is only possible if
∮

∂
∂n

(Kn+1 −2nκφ̄n) ds = 0 which is in general not the case. In the
case of a period channel, contours of mean buoyancy are closed going from one end
to the other, showing the limitation of this approach. However, using the redefined
rotational flux it is possible to evaluate the diffusivity K1 for the steady state

K1 + κ = κ

[
(1 + C) − Dφ1(1 + C) + D2φ2(1 + C) − D3

2
φ3(1 + C) +

D4

3!
φ4(1 + C) − · · ·

]

Summing up yields an exact expression for the turbulent diffusivity K1 given by (7.3).

REFERENCES

Andrews, D. G. & McIntyre, M. E. 1976 Planetary waves in horizontal and vertical shear:
the generalized Eliassen–Palm relation and the zonal mean accelaration. J. Atmos. Sci. 33,
2031–2048.

Andrews, D. G. & McIntyre, M. E. 1978 Generalized Eliassen–Palm and Charney–Drazin
theorems for waves on axisymmetric mean flows in compressible atmosphere. J. Atmos.
Sci. 35, 175–185.

De Szoeke, R. A. & Bennett, A. F. 1993 Microstructure fluxes across density surfaces. J. Phys.
Oceanogr. 23, 2254–2264.

Dillon, T. M. & Park, M. M. 1987 The available potential energy of overturns as an indicator of
mixing in the seasonal thermocline. J. Geophys. Res. 92 (C5) 5345–5353.

Eden, C., Greatbatch, R. J. & Olbers, D. 2007 Interpreting eddy fluxes. J. Phys. Oceanogr. 37,
1282–1296.

Gregg, M. C. 1998 Estimation and geography of diapycnal mixing in the stratified ocean. In
Physical Processes in Lakes and Oceans (ed. J. Imberger), Coastal and Estuarine Studies,
vol. 54, pp. 305–338. Am. Geophys. Union.

McDougall, T. J. & McIntosh, P. C. 1996 The temporal-residual-mean velocity. Part I. Derivation
and the scalar conservation equation. J. Phys. Oceanogr. 26, 2653–2665.

McDougall, T. J. & McIntosh, P. C. 2001 The temporal-residual-mean velocity. Part II. Isopycnal
interpretation and the tracer and momentum equations. J. Phys. Oceanogr. 31 (5), 1222–
1246.

Medvedev, A. S. & Greatbatch, R. J. 2004 On advection and diffusion in the mesosphere
and lower thermosphere: the role of rotational fluxes. J. Geophys. Res. 109 (D07104,
10.1029/2003JD003931).

Nakamura, N. 1996 Two-dimensional mixing, edge formation, and permeability diagnosed in an
area coordinate. J. Atmos. Sci. 53, 1524–1537.

Osborn, T. R. & Cox, C. S. 1972 Oceanic fine structure. Geophys. Astrophys. Fluid Dyn. 3 (1),
321–345.

Plumb, R. A. 1990 A nonacceleration theorem for transient quasi-geostrophic eddies on a three-
dimensional time-mean flow. J. Atmos. Sci. 47 (15), 1825–1836.

Plumb, R. A & Ferrari, R. 2005 Transformed Eulerian-mean theory. Part I. Nonquasigeostrophic
theory for eddies on a zonal-mean flow. J. Phys. Oceanogr. 35 (2), 165–174.



474 C. Eden, D. Olbers and R. J. Greatbatch

Schmitt, R. W., Ledwell, J. R., Montgomery, E. T., Polzin, K. L. & Toole, J. M. 2005 Enhanced
diapycnal mixing by salt fingers in the thermocline of the tropical Atlantic. Science 308 (5722),
685–688.

Thorpe, S. A. 1977 Turbulence and mixing in a Scottish loch. Phil. Trans. R. Soc. Lond. Ser. A,
Math. Phys. Sci. 286 (1334), 125–181.

Winters, K. B. & D’Asaro, E. A. 1995 Diascalar flux and the rate of fluid mixing. J. Fluid. Mech.
317, 179–193.

Wunsch, C. & Ferrari, R. 2004 Vertical mixing, energy and the general circulation of the oceans.
Annu. Rev. Fluid Mech. 36, 281–314.


